

THE TRIAD APPROACH

The Triad Approach to make contaminated sites cleanup projects better and more cost-effective.Case: Complementary laboratory (ICP, etc) and field XRF analysis

Drs Ben Keet

Background Drs Ben Keet

Free University of Amsterdam : Physics & Hydrogeology (theses: Isotope Hydrology + Hydrochemistry)

Work experience

- 5 years Ass. Lecturer Physics & Groundwater Models
- 5 years Shell Int'l : UK, Algeria, Gabon, Ecuador, London
- 20 years Geo & Hydro: New Zealand ('87-'91), Australia, US, Europe, back in New Zealand (from 2003)
- Ø Proj. manager 2500 site assessments, 1500 remediations
- Ø Design & manage : 400 in situ & biological remediation systems.
- Ø Expert witness, 2nd opinion, accredited site auditor

What is "TRIAD"?

Simplified definition:

The Triad = an innovative <u>decision-making</u> tool

The Triad approach :

- Proactively exploits new characterization tools and treatment techniques,
- Uses interactive work strategies
- Provides better and cheaper results

Is used by innovative and successful

contaminated site professionals.

Triad Message

- Explicitly identify and manage uncertainties that could lead to decision errors
- ▲ Focus on: "sampling representativeness"
- Use new field & in-situ analysis methods to increase cost-effective sample representativeness
- Need to adapt work routines to include mechanisms that explicitly manage representativeness

Effect of analytical uncertainty on total uncertainty

Misleading because...

• Not all field methods are screening methods!

- Not all field produced data are screening quality data!
- Definitive analytical lab methods may produce screening quality data!

Causes of Soil Sample Variability

Regulatory and field practice assume the size/volume of a sample has no effect on analytical results.

The assumption doesn't hold under heterogeneity;

sample volume can determine the analytical result!

The Nugget Effect

Same contaminant mass... but different concentration results!!

Core of Triad: Conceptual Site Model

Development of Conceptual Site Model ▲ Focusses investigation ▲ Use current and historial site lay-out ▲ Visualise the way operations were carried out \checkmark Use the 'Sherlock Holmes' method ▲ *Reduces uncertainties* ▲ By increasing sample representativeness ▲ Being able to make sound decisions

Lyndhurst, Hastings -3 ha orchard -Will be 34 lot subdivision

-Task: -Assess, Remediate &Validate

www.hawkeshav.harcourts.co.nz

P = pear treesS = shed

Result of Assessment: 6 x 6 meter grid 4 layers 100 – 150 mm

3,969 samples5 x XRF analysedusing smart composites

Produced hotspot & mix volumes map

To avoid weeks of analysis, the number of analysis can be significantly reduced by 'using smart composites'

To refine the CSM we need

 ▲ Quality control of field data → (Laboratory analysis)

▲ Compare and adjust if required

▲ Reduce uncertainty of analytes →
 Laboratory screening for OCP, OP & ON
 ▲ Identify additional hotspots

Lab analysis

- As, Pb, Cu-OP,ON, OCPs(only DDT found)
- confirms XRF map
 + adds hotspot @ 12
 (DDT)

XRF readings (mg/kg ww)							Laboratory results (mg/kg ww)							
er	Av xrf	Av xrf	Av xrf	Av xrf	% xrf	CuTRI		ZnTRI		PbTRI		AsTRI		
dma	SMC	SMC	SMC	SMC	<lod< td=""><td></td><td>Δ%</td><td>4</td><td>$\Delta\%$</td><td></td><td>Δ%</td><td></td><td>Δ%</td><td>The second</td></lod<>		Δ %	4	$\Delta\%$		Δ %		Δ %	The second
n S	Cu	Zn	Pb	As (corr)		Cu		Zn		Pb		As		6
cs1	240	92	123	33	38	236		98		133		43		R
							2		-6		-7		-22	
cs2	107	85	78	25	8	119		87		77		24		9
							-10		-3		1		5	
cs3	127	85	215	69	20	132		83	_	221	_	70	<u>ک</u>	ř A
a a 1	405	70	450		0	00	-4	74	2	140	-3	40	-1	
CS4	105	79	150	55	0	98	7	71	11	148	1	40	10	Sec.
cs5	211	66	159	52	10	251	,	66	11	199	1	61	19	22
			100	-			-16		0		-20	•.	-15	S.
cs6	218	275	53	14	88	176		454		46		12		and a
							24		-39		17		17	
cs7	182	104	55	19	64	241		123		89		23		
							-25		-16	~ · ·	-38		-19	91
cs8	354	107	209	63	0	365	2	100	7	214	2	53	10	
CeQ	228	98	177	51	22	127	-3	85	1	156	-2	<i>4</i> 7	19	
030	220	00	177	01		121	79	00	15	100	13	77	8	
cs10	112	99	110	27	70	131		111		115		30		C
							-14		-11		-4		-11	ton
													(80
	av	verage	4	ŀ	-	4	-	4		0	Ser.			
(+ means the XRF reads higher than the lab result)														

~n

Remediation starts: hotspot removal

Remediation QC: XRF guidance

Then: Soil Mixing

QC of Mixing process: XRF analysis

Unexpected hotspots

Overall aim of QC of soil mixing process:

- Obtain average levels below guideline levels
- 2. Ensure very limited number of peak concentrations
- Avoid mixing in HOT spots as these can have huge effect on final average concentration

Conceptual Site Model (CSM v3.0)

> after hotspot removal

Validation

Combine

- field and
- laborator

y analysis

Re-sample:

- Every lot
- Berms
- Reserves www.benkeet.com

Triad Approach: Conclusions

★A conceptual site model (CSM)evolves throughout all stages of the project

▲ Quality control (Lab) is important, however emphasis depends on project stage

▲ Field analysis increases representativeness and counters the variability in the sample

▲ Laboratory analysis manages analytical uncertainty: important during assessment and validation

Calibration unit Bioremediation

